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Note that using the statements of Sects. 2 and 3 enables us to extend the results of 

Theorems 2 and 3 to the case when the characteristic numbers of the matrix A,, in (1.1) 
have real parts that change signs at one point of the inter%d (to, T). 
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ON THE DEFINITION OF VARIATIONS IN THE MECHANICS OF CONTINUOUS MEDIA* 

A.G. TSYPKIN 

The basic forms of variations used in the mechanics of continuous media 
are presented, and relations between various types of variations of vectors 
and tensors are established. 

The construction of new more complex models of continuous media can be based on the use 
of the variational equation /l/. In constructing models of continuous dislocationsofplastic 
and solid media interacting with an electromagnetic field (in Newtonian mechanics as well as 
in the theory of relativity)/Z-6/ and, also, a number of other models, it is necessary to 
deal with variations of various types of different quantities, such as scalars, vectors, and 
tensors which can be considered as functions of Euler or Lagrangian coordinates, Hence it is 
necessary to have established connections between various types of variations which are of 
the same nature as the variable functions, 

Below we consider some of the simplest types of variations used to construct models of 
solid media in the special theory of relativity. 
coordinates and by E"(a= 

We shall denote by r((i= i,2,3,4) the Euler 
1,2, 3, 4) the Lagrangian coordinates of four-dimensional Minkowski 

space, assuming that the global, coordinates 
is the velocity of light in a vacuum). 

d and g* have a temporal nature za= ct, f;'=cr, (C 

In the coordinate system xi with basis vectors 8~ 
the lines Ii = coast, 

defined as unit vectors tangent to 
and the particle world lines determined by the equations 

law of motion of a point with Lagrangian coordinates relative to system 
zi = zi (Ea) (the 

s*). Here and 
henceforth Greek indices run through the numbers 
through 1,2,3,4. 

1,2,3, and the lower case Latin letters 

At each point of the Minkowski four-dimensional space-time we may introduce covariant 
and contravariant basis vectors fsi, and 3i, aei\ and aA= for coordinates 
P, respectively, connected by the equations 

t* and for systems 

When constructing models 
various scalar, vector, 

of media and fields besides the law of motion one has to consider 
and tensor fields that represent mechanical, physical, or chemical 

characteristic of the phenomena and processes investigated which are functions of thecoordinates 
zi or EQ (for details of these characteristics see, e,g., /6/), In problems related to 
specifying.or determining the laws of motion of the solid medium , and the laws of variation 

*Prikl.Matem.Mekhan.,48,6,904-911,1984 
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of fields, except real laws and fields +A) (A = 1, 2,. . .), we can mentally introduce the varied 
law of motion and varying scalar, vector, and tensor fields pCA)'. The difference between 
the varied value c("" and real value ccA) is usually called the variations of the function 
ct-4). The variation of the functions may be introduced by various means in conformity with 
various definitions. For instance, the variation of the function pcA' at the point M can 
be defined as the increment of that function due to the displacement from a given point M to 
close to point M', or as an increase due to infinitely small transformation of the coordinates 
at the fixed point M, etc. When determining the variations of scalars, vectors and tensors 
need not necessarily require that the variations represent increments of functions relative 
to some ancillary parameters which determine the global fields of varied functions. Note 
that it is advisable when varying tensors to determine their variations so that they represent 
tensors of the same rank with the same structure of indices as that of the varied tensor. 

Below, within the limits of the four-dimensional space only infinitely small variations 
of scalars, vectors, and tensors are considered, and the simplest connections between various 
possible forms of variations of these quantities are established. 

1. Variation of the law of motion. We shall define the variation of the law of 
motion assuming that the observer's system of coordinates z' and the accompanying Lagrangian 
system of coordinates &" are fixed. The variation of the law of motion of point kf, which 
has fixed Lagrangian space coordinates Eoa will be determined in the observer's system of 
coordinates by the equation 

6xi=zi'@,,,)- 2'(50", 5') (1.1) 

where s'(Ea@, Ed) is the world line of point M,, in the observer's system of coordinates and 
2" (foa, E4) is the world line, close to the world line z' (gOa, &") that corresponds to the varied 
law of motion of point MO. For a fixed e* variation 6x' represents a small possible 
displacement of point iU,, with coordinates xi to a near point with coordinates zi'. With 
this definition of the variation of the law of motion, the real displacements a9 of point 

Mo (to") are among the possible ones; the variations &xi become real displacements, if 

(Here and henceforth the index zero on the Lagrangian coordinates of point M is omitted, we 
denote its coordinates by p assuming at the same time that M is an arbitrary, but fixed 
point of the solid medium). 

In the observer's fixed system of coordinates z' the connection between the basis vectors 
of that system at points zk and rk f 6~" is defined by the equations 

a.@" -t 6xk)=3~(zk)+ 6x'r. I 1 1s 14(P) 

where ri,' are Christoffel symbols. The basis vectors of the observer's system of coordinates 
and the accompanying system of coordinates for the actual and the varied law of motion are 
connected by the formulas 

3 o1 = r 'a.++) 0 I (1.") 

a=" a,^‘=_ 
w 

3i (2” f 6xk) = ciaA + z,“V,6z’ai 

where V, is the operator of covariant differentiation in the observer's system of coordinates. 
Generally the remainder %A' - aeh is the variation of the vectors of the Lagrangian frame 

of reference stipulated by the variation of the law of motion, which is expressed bythe vari- 

ation of motion in accordance with the formula 
^, 
3. -3c-= 6,3,-=xat,'v,6xiai (1.3) 

Since the variation of the law of motion is defined inthe observer's fixed system of 
coordinates, i.e. it is assumed by the definition that 6,a* = 0, from formula (1.3) there 

follows the expression for the variation oftheelements of the transformation matrix 11 r,* jl 

6& = z,'O,W (1.4) 

From the equations .$kUi = hki and &ibtni = bab we obtain the expressions for the variations 

6.@', &dab' and &dA"b 

bg "ab= -ggij(gjbEJn + ~jR&b)'7,&? 
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2, Variations of the vectors and tensors. When designing models of solid 

media and fields, alongside the parameters defining the Simufated physical eveI03 in terms 
of shplest scalars and vectors dynamic and kinematic characteristics fsuch as density, velocity, 
etc.) some supplementary scalar, vector and tensor parameters may also appear in the equations. 
These parameters may be conditionally divided in two classes, namely, the parameters @*){A = 

1, 2, * . .)I which define the physical state of the solid medium or field (for instance, entropy 
the electric and magnetic field strength, antisymmetric tensors that define the inner angular 

momentum, etc.), and the parameters K(m(B = 1, 2, . . .), that define the geometrical and 

physical properties of the solid medium (for instance, the permittivity and permeability of 
the medium, the elastic modufi, tensors defining the anisotropic properties of the medium etc.). 
parameters which define the physical state of the medium can change independently Of the 
geometric, kinematic, and dynamic properties of the medium and may be used to describe the 
interaction between the medium and external heat flow, with the electromagnetic field, etc. 
parameters of the second kind can be universal physical constants or depend onthecoordinates 
d of f". These parameters among the arguments of thermodynamic functions Separate the 
specific soiid medium from the multiplicity of all kinds of possible media. The different 
meaning of these two forms of parameters compels us to treat their variation differently, as 
well as the equations obtained when var+ng them. 

Note that the question of a parameter belonging to this or that kind of type must be 
resolved ineach specific case, For instance, when setting up models in the context Of 
Newtonian mechanics, the components of the metric tensor gl, and the properties (Euclidean) 
of space have to be related to the physically varied constants or to known functions of the 

coordinates., while w&n setting up models in the general theory Of re~ativityr the Components 
of the metric tensor are the unknown functions and are varied. 

variations of an arbitrary vector or tensor field ,u*) in Newtonian mecahnics and in the 
special theory of relativity can be introduced onthe assumptioti that the observer's system of 
coordinates zi as well as the Lagrangien system of coordinates ga are fixed. Fox simplicity, 
we assume that p(A) is a vector 

EL=c~i(gk)ai(s~)=;~^"(FP)s,-(~*) (2.1) 

Let &&'be anarbitxarYvectarfieldwhichdiffersint;ignificantlyframthevectorfield m,which 
basthe components pi' and PA*' inthe sameframeofreference ei and a,A at thepoint&. The par- 
tialvariation & oftbevectorfield p is definedat point M as the remainder 

@8=$-p (24 

By this definition the partial variations of the components of the vector p are also 
components of the vector and for them the formulae 

hold, 
befining the partial variations of the vector, we assume that the vector field p' (con- 

sequently, also variations of a& 1 are arbitrary. From these in view of the supplementary 
assumptions we can separate partial variations of special form. For instance, it is possible 
to assume that partial variations of the components of the vector p" are variations of vector 
Components far infinitely small transformation of the obsarver's system.of coordinates 

&Pi = fc*P, 6ni (see Sect. 3). 
aFi = 

Partial variations of a tensor of any rank with an arbitrary structure of indices may be 
introduced by a formula similar to (2.21, when the partial variation of the tensor is a tensor 
of the same rank and the same structure of indices. 
transformation from the system of coordinates si 

The ccmponents of this tensor undergo 

ii Ei” ii t and in particular, 
to the system e' using matrices J/z:// and 

since in both the Newtionian mechanics and the special theory of 
relativity the metric tensor G = grj $3' = g,&+*sAb is assumed to ba cgiven, hence 
a&b* = 0. 

%l, = 

Since by the definition of a partial variation, 
by assumption fixed, 

thesystems of coordinates x' and f" are 
the symbols of partial variation and the operator of covariant differen- 

tiation are interchangeable. 
The variation of the vector field ,u at the point M in Lagrangian coordinates ga due to 

the variation of the law of motion, 
points P' (f"). and x"(p) 

can be defined as *tie remainder of vector field values at 

s,p = u (z'i') - p @) G.4) 

The right side of f2.4) can be written in the form 
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where the variations of 
netted by the equation 

the contravariant and 

8,&L' = g'j&. 

covariant components 6,~, and 6,~~ are con- 

6&t = &P&' 

i.e. the manipulation of indices is carried out on compopents of the metric tensor g,j. 
The variations of a tensor of arbitrary rank With an arbitrary structure of indices when 

the law of motion is varied can be calculated by formulae similar to (2.5). 
variation of a second rank tensor is 

For example, the 

&XT = SXZ~V,T.~S~& (T = Tj,%+a') 

The last formula shows that variations of the Euler components of the metric tensor, when 
the law of motion is varied, are equal to zero 

6.&j = 6,g” = 0 (Z.fd 
In the general theoxy of relativity the ccmqonents of the metric tensor of the observer's 

system of coordinates gii are the unknown functions that define the Riemannian space geometry, 
which are to be determined by solving specific problems and must be related to varied parameters 
of the type $A). In designing modeli in the general theory of relativity partial variations 
of the metric tensor ecinponents gi, are arbitrary and non-zero. Using the equation 

for partial variations of the Christoffel symbols and the covariant derivative of the tensor 

!-+)l we have /6/ 

arijr=+[$"(s;&ig.+ s;sj*) - gk*si5spl v,ag,, 

avip= V#p~ fF$mij" 

where B is the collective index of ccnuponents of the tensor of arbitrary rank +Q; F&Q 
denotes the sum of products of Christoffel symbols of completely defined form. Fox example, 
for a second-rank tensor (when B = mrt and c = &) , we have 

Taking as the basic assumption 

is satisfied when the law of motion 
the variation of the law of motion, 

F;.,! = S,“&“‘6,j + 6,“6,“6,j 

that the equation 

4. (P's*) = 6% W%/) (2.7) 

is varied, i.e. the variation of the vector p, due to 
is dependent on which coordinates (Eulerian of Lagrangian) 

are taken as the arguments of the varied vector. From (2.7) taking (1.4) and 12.5) into account 
we obtain the expressions for the variations of the Lagrangian components of the vector 

The variations of the Lagrangian components of a tensor ofarbitxaryrank with an arbitrary 

structure of the indices can be similarly determined. For example, the variations of the 

Lagrangian components to the second-rank tensor T- ?‘~“3pj = T.ya,AaAb are expressed in 

terms of variation of the law of motion by the formulae 

G,T-$=&%,,%iV,T: - 5i~T-~~V,'6x'+S,CT-~~Vb-6zi fZ.9) 

where VeA is the operator of cwariant differentiation in the Lagrangian system of coordiates. 

The formulae obtained enable us to determine the expxession for the variation of x,'. If in 

the set of x,,' the upperindicesareassumedfixed, thentheset of xii, xti, GE* 2, i canbe considered 
as the Lagrangian components of the vector. It can be shown that the variations of these 
components are calculated by the formula 

which is the same as (1.4) 
variations of the Lagrangian components 6,pAa and 6, Tn"', converted to the observer's 

System of coordinates x" bythetransformationformulae for the components of veCtOrS and 
tensors, have 

The sum of the partial variation of the Euler component of a vector (or tensor) and the 

variations of the Euler components of a vector (tensor) by varying the law of motion are 
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complete variations of the vector (tensor) ccmponents, which for the second-rank vector and 

tensor have the form 
&$ = *'+ &"V*$ (2.11) 

6T.j"' =I aT.j~ + ~Z~V~~.j~ 

and the complete variation of Lagrangian components are calculated by the formulae 

6&@ =&In= + &#A0 (2.~2) 

According to these formulae it can be assumed that partial variations are determined for 
constant Euler coordinates, and complete variations are determined at constant Lagrangian 
coordinates (and the varied law of motion). 

Taking into account that partial variations of the vector and tensor components are 
transformed when passing frcan the system of coordinates p to the system z* by conventional 
transformation formulae, formula (2.12) may be written intheform 

x,%&p"= ~~~x~v~~~-~*v~~z~ (2.13) 

x,‘&~S~T-:,+ 8Tfh -+ s5x’V,Ttk - T~~Q~~~ + T!;Q,tk 

The expressions on the right side of (2.13) are conventionally denoted by &I,$ and &L!?.!?, 
respectively, and are variations of the components of a vector and tensor of second rank, 
introduced intheLagrangian system of coordinates and converted to the observer's system of 
coordinates (such variations are called absolute variations). 

Formulae for variations ofLagrangian components of the metric tensor follow from (2.12) 
and have the form 

and the absolute variations OftbeLagrangian components of the metric tensor transformed to 
the observer's system of coordinates have the form 

It follows from (2.11) and (2.13) that the complete variations of the components of the 
vector p introduced relative to systemsofcoordinates x* and p are no longer connected by 
the usual formulae of passing from one system of coordinates to the other 

6jG#z,i6&= 

This is due to the fact that, when the law of motion is varied, the basis vectors Of the 
Lagrangiansystemof coordinates f" are different for the varied and actual law of motion 

By the definition of the tensor partial variation and the variation due to the law of 
motion, for real motions and processes, the partial variations vanish, while complete vari- 
ations of the components of the tensors become actual increments of components in the system 

of coordinates zi and y. For example, for the real increments of Euler components of a 
second-rank tensor we have 

dT.j" = skV,T.ji'd$4 

and for the increments of theLagrangian components converted to the system of coordinates x' 

d,T$ =2 u”V,T$ @ - T;V,u"@+ Tf~VJuk@ 

where u1 are components of the dimensionless vector of the &velocity. 
Variations of scalar, vector and tensor parameters K(s) = K= (s) (zi) = K(s) (p) that define 

the geometric or physical properties of the solid medium, are defined by the formulae 

OK" = aKhC= () 

6KA = Ax’ViKA, GLK-C= K-%&C +- LCGx’V&A 
where A and C are the collective notation of the tensor indices A tr ijk. . ., C = abc. . ., K-4 and 
liAc axe the Eulerian andLagrangiancomponents of the tensor K(s), and we denote by &c 
products of the form b$&"&... 

A more detailed analysis of various forms of variations of parameters WQ isgivenin/@. 

3. 
systeIn. 

Variations of the vectors and tensor on transforming the obeerver'"s 
Let Me be a fixed point withLagrangiancoordinates Ece, yOi and xoi be its 
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coordinates in the systems of coordinates y' and xi that correspond to two different frames 
of reference connected by the infinitely small transformation 

y' = r* + &j' @) (3.11 

Tetrads of the basis vectors a* (sk) and a*' (y") of the system of coordinates xi and y' 
are connected withthetetradofthe Lagrangian system of coordinates at point ;W, by the 
eour?ltions 

3* (8) = X,‘B^” (gob), 3i’ (yk) =c yi3’,^” (gob) 

By an infinitely small transformation of coordinates 13.1) vectors 3’(y”) convert into 
vectors a'(~') as the result of two successive operations performed on them, namely, parallel 
transfer from the point x,'+ hi (Z,,') to the point x,,*, 
atthe point 2,' 

and the transformation of coordinates 

s*' f_$) = 3’ (2”) f V,SqL (xk) 

The remainder 

$3* =a*'(y*)-.*(ZX)- v,Gtj*a*(Ik) ,3.')) 

represents the variation of the vectcrs of the observer's system of coordinates for an 
infinitely small transformation (3.1). 

Variations of the elements of the matrix of transformation xoi for transformation 13.1) 
may be introduced, using the equation i&S"= &,(&,%A"), taking into account that for transfarma- 
tion (3.1) of the coordinates , the VeCtOrS of the Lagrangian reference system remain unchanged 

&ra* = z,'V&' (3.3) 
The expression for variations of the vectors 3r for transformation (3.1) can be obtained 
from tjle equations ai3b = Sk’, and has the fok 

6,a, = -v,6qBi (3.4) 

Since the tensor is invariant to transformation (3.1) 

6% (T~~3~33) ;LI 0 

where A and B are the collective notation of the covariant 
3~ and 3* the polyadic products 3i3ph... and 3”3”3* . . 

basis of (3.2), from this equation 

3,3%,2’$ = - T$$, (;sA3B) 

tensor indices, and we denote by 

* t respectively. Hence on the 

(3.~) 

we can obtain expressions for the variation of the tensor for transformation (3.1). For 
example, for variations of the components of the metric tensor g" and gii the following 
formulae hold 

s&j = &jvks7ji + giqr,srlj 

iQ*j = - g*jv*srlk - gtkvhk 

Since for a transformation of the coordinates (3-l) the vector of covariant differentiation 
3iVf is invariant, the expressions for the variations S,Vi may also be obtained from (3.5). 
In particular 

6,,ViTf=-VJ$V$n'+ V,T$V,G$- V,T$‘,S$ 

For transformation of coordinates (3.1) variation of tensors of types $A' and K@) are 
obtained using formulae that follow from (3.51. 
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