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Note that using the statements of Sects., 2 and 3 enables us to extend the results of
Theorems 2 and 3 to the case when the characteristic numbers of the matrix 4, in (1.1)
have real parts that change signs at one point of the interval (4. T).
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ON THE DEFINITION OF VARIATIONS IN THE MECHANICS OF CONTINUOUS MEDIA*

A.G. TSYPKIN

The basic forms of variations used in the mechanics of continucus media
are presented, and relations between various types of variations of vectors
and tensors are established.

The construction of new more complex models of continuous media can be based on the use
of the variational equation /1/. In constructing models of continuous dislocations of plastic
and solid media interacting with an electromagnetic field (in Newtonian mechanics as well as
in the theory of relativity)/2-6/ and, also, a number of other models, it is necessary to
deal with variations of various types of different quantities, such as scalars, vectors, and
tensors which can be considered as functions of Buler or Lagrangian coordinates. Hence it is
necessary to have established connections between various types of variations which are of
the same nature as the variable functions,

Below we consider some of the simplest types of variations used to construct models of
solid media in the special theory of relativity, We shall denote by 2(i=1,2 34 the Euler
coordinates and by §%(e=4,2, 3, 4 the Lagrangian coordinates of four-dimensional Minkowski
space, assuming that the global, coordinates z* and & have a temporal nature zt=cof, ¥ =1, (¢
is the velocity of light in a vacuum),

In the coordinate system 2! with basis vectors » defined as unit vectors tangent to
the lines zi=rconst, and the particle world lines determined by the equations zi= 2 (8%) (the
law of motion of a point with Lagrangian coordinates relative to system ai). Here and
henceforth Greek indices run through the numbers 1,2,3, and the lower case Latin letters
through 1,2,3,4.

At each point of the Minkowski four~dimensional space-time we may introduce covariant

and contravariant basis vectors (s, and o, s, and »"* for coordinates s and for systems
E*, respectively, connected by the eguations
~ 8t ; g ~
PN | L
% THE T % %= =§.%a,

When constructing models of media and fields besides the law of motion one has to consider
various scalar, vector, and tensor fields that represent mechanical, physical, or chemical
characteristic of the phenomena and processes investigated which are functions of the coordinates
#i  or g* {for details of these characteristics see, €.g., /6/). In problems related to
specifying. or determining the laws of motion of the solid medium, and the laws of variation

*Prikl,Matem.Mekhan.,48,6,904-911,1984
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of fields, except real laws and fields p“4=1,2,...), we can mentally introduce the varied
law of motion and varying scalar, vector, and tensor fields p“). The difference between
the varied value g and real value p“Y is usually called the variations of the function
pld), The variation of the functions may be introduced by various means in conformity with
various definitions. For instance, the variation of the function a4’ at the point M can
be defined as the increment of that function due to the displacement from a given point M to
close to point M’, or as an increase due to infinitely small transformation of the coordinates
at the fixed point M, etc. When determining the variations of scalars, vectors and tensors
need not necessarily require that the variations represent increments of functions relative
to some ancillary parameters which determine the global fields of varied functions. Note
that it is advisable when varying tensors to determine their variations so that they represent
tensors of the same rank with the same structure of indices as that of the varied tensor.

Below, within the limits of the four-dimensional space only infinitely small variations
of scalars, vectors, and tensors are considered, and the simplest connections between various
possible forms of variations of these quantities are established.

1., Variation of the law of motion. we shall define the variation of the law of
motion assuming that the observer's system of coordinates Z and the accompanying Lagrangian
system of coordinates E* are fixed. The variation of the law of motion of point M, which
has fixed Lagrangian space coordinates E,* will be determined in the observer's system of
coordinates by the equation

bz’ =z (5, &) — z' (&% §Y) (1.1

where z' (§,% % is the world line of point M, in the observer's system of coordinates and
¥ (8,% kY is the world line, close to the world line =z’ (§,% EY) that corresponds to the varied
law of motion of point M, For a fixed &' variation 0z' represents a small possible
displacement of point M, with coordinates 2! to a near point with coordinates z". With
this definition of the variation of the law of motion, the real displacements det  of point
M, (8,*) are among the possible ones; the variations 8z become real displacements, if
i oz
5z =U_E‘-d§4

(Here and henceforth the index zero on the Lagrangian coordinates of point ¥ is omitted, we
denote its coordinates by ¢ assuming at the same time that M is an arbitrary, but fixed
point of the solid medium).

In the observer's fixed system of coordinates z* the connection between the basis vectors
of that system at points ¥ and z* 4 6z is defined by the equations

o (2" - 82") =9, (¥) + 62T "2y ()
where I’i,' are Christoffel symbols. The basis vectors of the observer's system of coordinates

and the accompanying system of coordinates for the actual and the varied law of motion are
connected by the formulas

3" = z,', (z") (1.2)
9, = %:T.‘ 3, (z" + bz*)=0," + z,°V,0z's;

where V, is the operator of covariant differentiation in the observer's system of coordinates.

Generally the remainder »,A" — 3, is the variation of the vectors of the Lagrangian frame
of reference stipulated by the variation of the law of motion, which is expressed by the vari-
ation of motion in accordance with the formula

oy — o, =089, =z,°V,0z's; (1.3)
Since the variation of the law of motion is defined inthe observer's fixed system of
coordinates, i.e. it is assumed by the definition that 8,9, =0, from formula (1.3) there
: : i
follows the expression for the variation of the elements of the transformation matrix Izt
8.z, = 2,V 0z (1.4)
From the equations &’z = 8, and E'z = 6,° we obtain the expressions for the variations
5,908, 8.g.,M and §.gA°®
8,970 = — £V, 820" 14.5)

8eor = & (zo'z’ + z,/5) V,82°
6xghub == gij (gjbgdu + gjng'b) ViSI!
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2. Variations of the vectors and tensors. Wwhen designing models of solid
media and fields, alongside the parameters defining the simulated physical events in terms
of simplest scalars and vectors dynamic and kinematic characteristics (such as density, velocity,
etc.) some supplementary scalar, vector and tensor parameters may also appear in the equations.
These parameters may be conditionally divided in two classes, namely, the parameters par (4 =
1, 2, ...), which define the physical state of the solid medium or field (for instance, entropy,
the electric and magnetic field strength, antisymmetric tensors that define the inner angular
momentum, etc,), and the parameters K (B = {, 2, ...), that define the geometrical and
physical properties of the solid medium (for instance, the permittivity and permeability of
the medium, the elastic moduli, tensors defining the anisotropic properties of the medium etc.).
Parameters which define the physical state of the medium can change independently of the
geometric, kinematic, and dynamic properties of the medium and may be used to describe the
interaction between the medium and external heat £low, with the electromagnetic field, etc.
Parameters of the second kind can be universal physical constants or depend on the coordinates
' of t®. These parameters among the arguments of thermodynamic functions separate the
specific solid medium from the multiplicity of all kinds of possible media. The different
meaning of these two forms of parameters compels us to treat their variation differently, as
well as the eguations obtained when varying them.

Note that the gquestion of a parameter belonging to this or that kind of type must be
resolved in each specific case. For instance, when setting up models in the context of
Newtonian mechanics, the components of the metric tensor g;; and the properties (Euclidean)
of space have to be related to the physically varied constants or to known functions of the
coordinates, while when setting up models in the general theory of relativity, the components
of the metric tensor are the unknown functions and are varied.

Variations of an arbitrary vector or tensor field pW in Newtonian mecahnics and in the
special theory of relativity can be introduced onthe assumption that the observer's system of
coordinates z' as well as the Lagrangian system of coordinates [° are fixed. For simplicity,
we assume that ud) is a vector

p=p'(z")a (") =p" () 2" @) @9

Let u' be an arbitrary vector field which differs insignificantly from the vector £ield u, which
has the components p* and pA% in the same frame of reference »; and 3, at the point¥. The par-
tialvariation du of the vector field m is defined at point M as the remainder

Ip=p' —p 2.2)

By this definition the partial variations of the components of the vector p are also
components of the vector and for them the formulae

a”=a}‘iaigap'i ' = G, = O, 0™ 2.3)
op' =z, 0p0, On'= g O, Opy = gadn™
hold.

befining the partial variations of the vector, we assume that the vector field mu' (con-
sequently, also variations of du)) are arbitrary. From these in view of the supplementary
assumptions we can separate partial variations of special form. For instance, it is possible
to assume that partial variations of the components of the vector ;ﬁ'are variations of vector
components for infinitely small transformation of the cbserver's system of coordinates Opi==
o' = p'V, &n' (see Sect. 3),

Partial variations of a tensor of any rank with an arbitrary structure of indices may be
introduced by a formula similar to (2.2), when the partial variation of the tensor is a tensor
of the same rank and the same structure of indices. The components of this tensor undergo
transformation from the system of coordinates z' to the system §° using matrices ﬂxj{] and
;;gfﬁt and in particular, since in both the Newtionian mechanics and the special theory of
gelimvéty the metric tensor G = g; 9’ = g,/eN%A? is assumed to be :given, hence 8gyy =
gae" = U

Since by the definition of a partial variation, the systems of coordinates z' and 2 are

by assumption fixed, the symbols of partial variation and the operator of covariant differen-
tiation are interchangeable,

The variation of the vector field p at the point ¥ in Lagrangian coordinates }° due to
the variagion of the law of motion, can be defined as the remainder of vector field values at
points 2z (89, and 2 (&%)

8. = u (z) — p (%) (2.4)

The right side of {2.4) can be written in the form

By =B, p's; = 82" Vs, (2.3)
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where the variations of the contravariant and covariant components §
nected by the equation

8op’ = g0y By = g Sop

i.e. the manipulation of indices is carried out on compopents of the metric tensor gij-
The variations of a tensor of arbitrary rank with an arbitrary structure of J,nd;_ces when
the law of motion is varied can be calculated by formulae similar to (2.5) Bar mwmme

2L IO Ariec can ae calouiated AN LQe S1MiLar \dhad/e £ 0K ca.muy-l.c, the

variation of a second rank tensor is
8, T =82V, T ja’ (T="Tts2

The last formula shows that variations of the Euler components of the metric tensor, when
the law of motion is varied, are equal to zero

0:81)= 6.7 =0 (2.6)
In the general theory of relativity the components of the metric tensor of the observer's
system of coordinates g;; are the unknown functions that define the Riemannian space geometry,
which are to be determined by solving specific problems and must be related to varied parameters
of the type nlb, In designing models in the general theory of relativity partial variations
of the metric tensor components g;; are arbitrary and non-zero, Using the equation
og, . a%.,
il R S PR it ML P
az® gzt T A 9zt dz* 9zt T

for partial variations of the Christoffel symbols and the covariant derivative of the tensor
ll_l_(“)’ we have /&/

oy = [g™ «S;‘b‘f + 6:6,-% — £%6,°5,7] V,980q

where B is the collective index of components of the tensor of arbitrary rank u; FgBi

ul:llULES uxe sum OI PZ'UQU‘—Lb UI \-HIJ.SLOEIEJ. symno.l.s QI t.ompx.eceJ.y Qezlneu rOrm. FOI‘ example,
for a second-rank tensor (when B=mn and € = lr) , we have

FBI 58,8, 1 §,8,78,7

=48 7T Mr Yy VR
Taking as the basic assumption that the equation
B, (n'a)) = 5, (nA®a,0) @.7)

is satisfied when the law of motion is varied, i.e. the variation of the vector pu, due to

the variation of the law of motion, is dependent on which coordinates (Eulerian of Lagrangian)
are taken as the arguments of the varied vector, From (2.7) taking (1.4) and (2.5) into account
we obtain the expressions for the variations of the Lagrangian components of the vector

e ag K i k i O oy

O™ 2= B702 Vi — &"n" Vi b2’ {2.8)
The variations of the Lagrangian components of a tensor of arbitrary rank with an arbitrary
structure of the indices can be similarly determined. For example, the variations of the
Lagrangian components to the second-rank tensor T == T 33’ = T{"5,A0A? are expressed in
terms of variation of the law of motion by the formulae

8. T % =55, 02V, TS —E°T 5V, 02 4- E°T %V, 8z 2.9)
where V. 1is the operator of covariant differentiation in the Lagrangian system of coordiates.
The farmulae obta;ngd enable us to determine the expression for the variation of z,'. If in
the set of ! the upper indices are assumed fixed, then the set of =z,', 7, z;’, z;' canbe considered

as the Lagranglan components of the vector. It can be shown that the variations of these
components are calculated by the formuls

complenaen.e calcusaiec DY The zormul.s

8.z, = VA8 = z,/V,82°
which is the same as (1.4)
c La.2)

Variations of the Lagrangxan components At and 5, TA™, converted to the chserver’s
system of coordinates 2' by the transformation formulae for the components of vectors and

dm e Tawvwa +ha Favm
tensors, have the form
ko i 1 i
2,180,070 == 82"V ' — 'V, 82 (2.10)
2 e b8 TN 50T S 8ai . Thg g
a Sk Yy B O VR i T ,ngu T 4 ¥ RUL

The sum of the partial variation of the Euler component of a vector (or tensor) and the
variations of the Euler components of a vector (tensor) by varying the law of motion are
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complete variations of the vector (tensor) components, which for the second-rank vector and
tensor have the form
ﬁpi = gut 4 kavkp* (2.11)
GT,j(' = aT,,-*' -+ kaka"ji*

and the complete variation of Lagrangian components are calculated by the formulae
Brph® = dpAs L §pAe (2.12)

8T = 8TH™ 4 8. T4*

According to these formulae it can be assumed that partial variations are determined for
constant Buler coordinates, and complete variations are determined at constant Lagrangian
coordinates (and the varied law of motion).

Taking into account that partial variations of the vector and tensor components are
transformed when passing from the system of coordinates §° to the system z' by conventional
transformation formulae, formula (2.12) may be written in the form

2,560 70 = dp' + 82Vt — ptV, 82 (2.13)
2808, T % == 8Ty 4 82°V, T — T3V, 82 + T4V, 82

The expressions on the right side of (2.13) are conventionally denoted by O’ and & T.%
respectively, and are variations of the components of a vector and tensor of second rank,
introduced in the Lagrangian system of coordinates and converted to the observer's system of
coordinates (such variations are called absolute variations),

Formulae for variations of Lagrangian components of the metric tensor follow from (2.12)
and have the form

8180 = 8,8 =103V 65" + EgaVy 0
6Lg~ab -— axg"ab — .ug~cbvc~6zi — Eibg‘acv;szl

and the absolute variations of the Lagrangian components of the metric tensor transformed to
the observer's system of coordinates have the form

gingjbsr.ga‘; = g, V;82* + g,;V;bz*
212,798,870 = — gV b2’ — gV, 52

It follows from {2.11) and (2,13) that the complete variations of the components of the
vector p introduced relative to systems of coordinates 2’ and }* are no longer connected by
the usual formulae of passing from one system of coordinates to the other

8yt = 2,0 phe

This is due to the fact that, when the law of motion is varied, the basis vectors of the
Lagrangian system of coordinates E° are different for the varied and actual law of motion

By the definition of the tensor partial variation and the variation due to the law of
motion, for real motions and processes, the partial variations vanish, while complete vari-
ations of the components of the tensors become actual increments of components in the system

of coordinates z' and }°. For example, for the real increments of Euler components of a
second-rank tensor we have

AT = oV, T.;+dEs

and for the increments of the Lagrangian components converted to the system of coordinates z'
drTh = a0, T det — TV, dit + THVuk dis
where u' are components of the dimensionless vector of the 4-velocity.
Variations of scalar, vector and tensor parameters K@ = K= (8 (z') = K@® (%) that define
the geometric or physical properties of the solid medium, are defined by the formulae
KA = QKAC = ()
SKA == 82'V, K8, 8.K°C== KASE,C -+ E4C82°V KA
where A and C are the collective notation of the tensor indices A4 =ijk..., C = abec..., K4 and

KAC are the Eulerian and Lagrangiancomponents of the tensor K, and we denote by E.°
products of the form ..

A more detailed analysis of various forms of variations of parameters K® isgivenin /6/.

3. Variations of the vectors and tensor on transforming the observer's
system., Let M, be a fixed point with Lagrangiancoordinates &%, y,' and z, be its
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coordinates in the systems of coordinates y‘ and z' that correspond to two different frames
of reference connected by the infinitely small transformation

y' =2z + o' @) 3.1)

Tetrads of the basis vectors 9 (z') and s, () of the system of coordinates 2 and ¥
are connected with the tetrad of the Lagrangian system of coordinates at point M, by the

equations X _ )
o (2" =29 (&), 9" () =™ (%)

By an a.nfmltely small transformation of coordinates (3.1) vectors a" (y") convert into
vectors @ (z) as the result of two successive operatmns performed on them, namely, parallel

transfer from the point z,' + 81’ (z") to the point 2y, and the transformation of coordinates
at the point z,' X
8t (") =o' (z¥) + V,81'9* (%)
The remainder
o' =97 (y¥) — 9* (zF) == V, 810" (<) 3.2)

represents the variation of the vecters of the observer's system of coordinates for an
infinitely small transformation (3.1). )

Variations of the elements of the matrix of transformation ;' for transformation (3.1)

may be introduced, using the equation 849' = 8, (z,9/%), taking into account that for transforma=-
tion (3.1) of the coordinates, the vectors of the Lagrangian reference system remain unchanged

Suzy' = 2,'V,n' (3.3)
The expression for variations of the vectors 3, for transformation (3.1) can be obtained
from the equations 99, = 8, and has the form

Syap = -—Vkﬁq"a,- {3.4)
Since the tensor is invariant to transformation {(3.1)
84 (T52498) =0

where A and B are the collective notation of the covariant tensor indices, and we denote by
24 and 3B the polyadic products 5;5;9... and 9"9"9" ..., respectively. Hence on the
basis of (3,2), from this equation

aAaBG,,,T b= — T3 (940P) {3.5)

we can obtain expressions for the variation of the tensor for transformation (3,1). For
example, for variations of the components of the metric tensor g/ and g,; the following
formulae hold

8ng" = g"Vibn’ + g" Vi’
8ngi; = — gkjviénk - gikv)ank

since for a transformation of the coordinates (3.1) the vector of covariant differentiation
»'V, is invariant, the expressions for the variations &,V; may also be obtained from (3.5).
In particular . .
6,,\7in;} = —V,TiV.80" 4 V.T59,0n — V,TLV, 60

For transformation of coordinates (3.1} variation of tensors of types pé and K® are
obtained using formulae that follow from {3.5).
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